Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Adicionar filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano
1.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.11.02.565304

RESUMO

In late 2023, a lineage of SARS-CoV-2 emerged and was named the BA.2.86 variant. BA.2.86 is phylogenetically distinct from other Omicron sublineages identified so far, displaying an accumulation of over 30 amino acid mutations in its spike protein. Here, we performed multiscale investigations to reveal the virological characteristics of the BA.2.86 variant. Our epidemic dynamics modeling suggested that the relative reproduction number of BA.2.86 is significantly higher than that of EG.5.1. Experimental studies showed that four clinically-available antivirals were effective against BA.2.86. Although the fusogenicity of BA.2.86 spike is similar to that of the parental BA.2 spike, the intrinsic pathogenicity of BA.2.86 in hamsters was significantly lower than that of BA.2. Since the growth kinetics of BA.2.86 is significantly lower than that of BA.2 in both in vitro cell cultures and in vivo, it is suggested that the attenuated pathogenicity of BA.2.86 is due to its decreased replication capacity.

2.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.10.19.563209

RESUMO

In middle-late 2023, a sublineage of SARS-CoV-2 Omicron XBB, EG.5.1 (a progeny of XBB.1.9.2), is spreading rapidly around the world. Here, we performed multiscale investigations to reveal virological features of newly emerging EG.5.1 variant. Our phylogenetic-epidemic dynamics modeling suggested that two hallmark substitutions of EG.5.1, S:F456L and ORF9b:I5T, are critical to the increased viral fitness. Experimental investigations addressing the growth kinetics, sensitivity to clinically available antivirals, fusogenicity and pathogenicity of EG.5.1 suggested that the virological features of EG.5.1 is comparable to that of XBB.1.5. However, the cryo-electron microscopy reveals the structural difference between the spike proteins of EG.5.1 and XBB.1.5. We further assessed the impact of ORF9b:I5T on viral features, but it was almost negligible at least in our experimental setup. Our multiscale investigations provide the knowledge for understanding of the evolution trait of newly emerging pathogenic viruses in the human population.

3.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.10.03.560628

RESUMO

The severe acute respiratory syndrome coronavirus (SARS-CoV-2) spike (S) protein is essential in mediating membrane fusion of the virus with the target cells. Several reports demonstrated that SARS-CoV-2 S protein fusogenicity is reportedly closely associated with the intrinsic pathogenicity of the virus determined using hamster models. However, the association between S protein fusogenicity and other virological parameters remains elusive. In this study, we investigated the virological parameters of eleven previous variants of concern (VOCs) and variants of interest (VOIs) correlating with S protein fusogenicity. S protein fusogenicity was found to be strongly correlated with S1/S2 cleavage efficiency and plaque size formed by clinical isolates. However, S protein fusogenicity was less associated with pseudoviral infectivity, pseudovirus entry efficiency, and viral replication kinetics. Taken together, our results suggest that S1/S2 cleavage efficiency and plaque size could be potential indicators to predict the intrinsic pathogenicity of newly emerged SARS-CoV-2 variants.


Assuntos
Síndrome Respiratória Aguda Grave
4.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.09.07.556636

RESUMO

In September 2023, the SARS-CoV-2 XBB descendants, such as XBB.1.5 and EG.5.1 (originally XBB.1.9.2.5.1), are predominantly circulating worldwide. Unexpectedly, however, a lineage distinct from XBB was identified and named BA.2.86 on August 14, 2023. Notably, BA.2.86 bears more than 30 mutations in the spike (S) protein when compared to XBB and the parental BA.2, and many of them are assumed to be associated with immune evasion. Although the number of reported cases is low (68 sequences have been reported as of 7 September 2023), BA.2.86 has been detected in several continents (Europe, North America and Africa), suggesting that this variant may be spreading silently worldwide. On 17 August 2023, the WHO designated BA.2.86 as a variant under monitoring. Here we show evidence suggesting that BA.2.86 potentially has greater fitness than current circulating XBB variants including EG.5.1. The pseudovirus assay showed that the infectivity of BA.2.86 was significantly lower than that of B.1.1 and EG.5.1, suggesting that the increased fitness of BA.2.86 is not due to the increased infectivity. We then performed a neutralization assay using XBB breakthrough infection sera to address whether BA.2.86 evades the antiviral effect of the humoral immunity induced XBB subvariants. The 50% neutralization titer of XBB BTI sera against BA.2.86 was significantly (1.4-fold) lower than those against EG.5.1. The sera obtained from individuals vaccinated with 3rd-dose monovalent, 4th-dose monovalent, 4th-dose BA.1 bivalent, and 4th-dose BA.5 bivalent mRNA vaccines exhibited very little or no antiviral effects against BA.2.86. Moreover, the three monoclonal antibodies (Bebtelovimab, Sotrovimab and Tixagevimab), which worked against the parental BA.2, did not exhibit antiviral effects against BA.2.86. These results suggest that BA.2.86 is one of the most highly immune evasive variants ever.


Assuntos
Convulsões
5.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.08.16.553332

RESUMO

Circulation of SARS-CoV-2 Omicron XBB has resulted in the emergence of XBB.1.5, a new Variant of Interest. Our phylogenetic analysis suggests that XBB.1.5 evolved from XBB.1 by acquiring the F486P spike (S) mutation, subsequent to the acquisition of a nonsense mutation in ORF8. Neutralization assays showed similar abilities of immune escape between XBB.1.5 and XBB.1. We determined the structural basis for the interaction between human ACE2 and the S protein of XBB.1.5, showing similar overall structures between the S proteins of XBB.1 and XBB.1.5. The intrinsic pathogenicity of XBB.1.5 in hamsters is lower than that of XBB.1. Importantly, we found that the ORF8 nonsense mutation of XBB.1.5 resulted in impairment of MHC expression. In vivo experiments using recombinant viruses revealed that the XBB.1.5 mutations are involved with reduced virulence of XBB.1.5. Together, these data suggest that the mutations in ORF8 and S could enhance spreading of XBB.1.5 in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA